

Equations in Two Variables

Goal: Find solutions of equations of two variables.

Vocabulary

Solution of an equation in two variables:

An ordered pair whose coordinates make an equation true

Checking Solutions EXAMPLE 1

Tell whether (5, -8) is a solution of 4x - y = 12.

$$4x - y = 12$$
 Write original equation.

$$4(5) - (-8) \stackrel{?}{=} 12$$
 Substitute 5 for x and -8 for y

$$20 + 8 \stackrel{?}{=} 12$$
 Simplify.

Answer: The ordered pair (5, -8) is not a solution of 4x - y = 12.

When you substitute 5 for x and -8 for y, the result $\begin{vmatrix} \mathbf{is.not} \end{vmatrix}$ a true equation.

EXAMPLE 2 Multiple Choice Practice

Bowling At a bowling alley, it costs \$5 to rent shoes plus \$3 per game. The total cost can be modeled by the equation C = 5 + 3g, where C is the total cost, in dollars, and g is the number of games bowled. Which table shows some possible total costs for bowling?

C	\$8	\$11	\$14	\$17
g	1	2	3	4

1.										T. 15.10 1.4/4.
~										
							· · · · · · · · · · · · · · · · · · ·			
(C)	1 3		A 15			3.6	1		1000	
	1 1	ο. :		1 131 1	1	35.0			1000	1. 1.14
- 1. K. S. S.		>		1100	Z	11.11.15	la ai B	4 3 5	1000.00	/ 1 ∃asid£
1 77,1 37						4.5	•	5.00		7
2505-53	16									는 수 살
0.00			1.50	200	1.1	1.0	1.5			
active to	4			3			110		1.00	100
1 11 2		ر · حي	- \$:	5	\$8	() I	T 1	L3	φ.	10
Paggri es		. [Ψ.	•	· Ψ.	LJ	. J	18 🗆
n ekke iah	'I						1.1	. 1		- T. / J:
the second terms							- The second			

			- TARRICH STATE
g 1	2	3	1
			7 ,
C \$8	\$16	\$24	\$32

Solution

Substitute several values of g into the equation and solve for C. Then identify the table that contains the solutions.

	Ooldtiong,	•	
g-value	Substitute for g.	Evaluate	Solution (g, C)
g=1	C = 5 + 3(1)	C = 8	(1, 8)
g = 2	C = 5 + 3(2)	$C = \boxed{11}$	(2, 11)
g = 3	C = 5 + 3(3)	$C = \boxed{14}$	(3, 14)
g = 4	$C=5+3(\boxed{4})$	$C = \begin{bmatrix} 17 \end{bmatrix}$	(4, 17)
Answer: The correc	t answer is B.	A B C D	

Guided Practice Tell whether the ordered pair is a solution of the equation.

1.
$$y = -3x - 5$$
; $(-4, 7)$ **2.** $-7y + x = -7$; $(-1, -14)$

EXAMPLE 3 Finding Solutions of an Equation

Solve the equation 6x + 2y = 16 for y. Then list four solutions.

1. Solve the equation for y.

6x + 2y = 16

Write original equation.

16 - 6x

Subtract 6x from each side.

Divide each side by 2

2. Substitute several values of x into the equation and solve for y.

x-value

Substitute for x.

Evaluate

Solution (x, y)

(-1, 11)

$$x = -1$$

$$y = 8 - 3(-1)$$

$$x = 0$$

$$y = 8 - 3(0)$$

$$x = 1$$

$$x = 1$$
 $y = 8 - 3$

$$y = \begin{bmatrix} \mathbf{5} \end{bmatrix}$$

x = 2

$$y = 8 - 3(2)$$

Generally, an equation involving two variables has an infinite number of solutions.

When dividing each

side by 2, make sure you divide each term

of the expression by 2.

Answer: Four solutions are (-1, 11)

Homework

140

Guided Practice List four solutions of the equation.

3.
$$y = -5x + 11$$

4.
$$18x - 3y = 9$$